Water Pollution Studies with Special Reference to Ajmer Rajasthan India

Rashmi Sharma

Department of Zoology, S P C Govt College Ajmer, India

Corresponding author
Rashmi Sharma, Department of Zoology, S P C Govt College Ajmer Rajasthan, India Email: sharmarashmigca@gmail.com

Submitted: 20 Dec 2018; Accepted: 29 Dec 2018; Published: 02 Feb 2019

Abstract
Only 30 % of fresh water in India is fit for consumption. Whole world is suffering from the same problem. The sources of pollution are sewage discharge, small industries discharge, agriculture run off. Sewage discharge is increasing due to increasing population. The causes of water pollution are discussed in the present paper.

Keywords: Water Pollution, Sewage Discharge, Pesticides, Industrial Discharge

Introduction
Only 30 % of fresh water in India is fit for consumption. Whole world is suffering from the same problem. The sources of pollution are sewage discharge, small industries discharge, agriculture run off. Sewage discharge is increasing due to increasing population. The causes of water pollution are discussed in the present paper. We cannot survive without water due to increasing population demand of water is also increasing. In 1972 conference held at Stockholm to discuss human Environment. Environment is an important issue [1]. Gleick explained resources of water. Falkenmark showed importance of pure water. Edwards studied multidimensional aspect of water. Dugan discussed chemical and biological aspect of water. According to Bandy urban people require more water and discharge toxic water, whereas rural people require less water and quality of discharge are not toxic. Mishra studied management of fresh water pond in Varanasi.

Status of Ground Water
Annual replenishable groundwater resources 319.56 mcm. Gross annual ground water draft (Rajasthan) 392.4mcm. Annual requirement of water worldwide is 7000 km3. Ground water reserve is 70,000,00 km3. This plethora amount of water goes into ground by the process of precipitation. But due to limited rainfall in last year’s restock water table is lowered. Due to construction of roads there is no percolation so there is shortage of water due to altitude, soil composition, and vegetation cover. Water planning should be done, water recycling and reuse plant should be there in every house. Underground Water storage tank should be there in every house. Surface water resources can be known by aerial photography and other methods but underground water can be known by limited methods only.

Fresh water pollution (Lake) in India
Almost every lake in India is polluted. According to National Env. Eng Research institute (NEERI) Nagpur 70% of water in India is polluted. Physiochemical properties of fresh water in India has degraded and still degrading. Reports show presence of pathogenic and nonpathogenic microorganisms in fresh water beyond the limit. Pollution in Tungabhadra reservoir was studied by Rao and Govind Pc properties of water of Hoogly estuary at various points was conducted by Basu Conducted pollution studies in Ganga and Yamuna at Allahbad [2]. Prasad and Saxena conducted study river Gomati with respected to blue green algae. In India Rivers are treated as Goddes. Neyyar, Nair Kanhan studied river in Nagpur Deshmukh.

International Studies on Water Pollution
At International level studied quality of river Raisin in Canada [3]. Reichert studied quality of river Glatt in Switzerland. Quality of river Nile with respect to macrophytes was done by Obeid and Chadwick Physiochemical properties of river Amazon was studied by Gibbs Rai and Hill focus at its microbiological aspect. River Rhone Nutritional characters studied by Fauvet Welsh river in U.K. was studied by Brooker Mississippi river physiochemical chara cters were studied by Bollinger Missouri river by Berner Detroit River in Michigan studied by Manny Heavy metal pollution in the same river by Menny and its impact on biotic component was studied by Manny and Kenaga The previous literature shows that problem of water pollution is not only in India but it is in whole world.

Multidisciplinary study of river Aliakman in Greece was conducted by Lazaridou studied eutrophication in costal river of Israel [4]. Marshall and Falconer studied Lake Mellwaine in Rhodesia. Stream pollution was studied by Ellis studied pollution content of river Odzi in Zimbabwe [5]. Imevbore studied river Niger. Heavy metal analysis in estuary of France was conducted by Cossa and Noel Center and Spencer studied growth of macrophytes in some lake of Florida.

Sources of pollution
The pollutants come from prominent sources are:
1. Industrial effluents discharge into river without pretreatment.
2. Sewage discharge
3. Agriculture run off where chemical fertilizers, pesticides, insecticides are used.
List of pollutants
1. Heat
2. Acids,
3. Alkalies
4. Anions (sulphide, sulphite, cyanide)
5. Detergents
6. Domestic sewage (Detergent, nutrient, metals, pathogens and variety of other compounds) [6].
7. Farm manure
8. Food processing water
9. Gases (Chlorine and ammonia)
10. Metals (Lead, Cadmium and zinc)
11. Nutrients (Phosphates nitrates)
12. Oil and oil dispersants
13. Organic toxic waste (Formaldehyde and phenols)
14. Pathogens
15. Pesticides
16. Polychlorinated biphenyls
17. Radionuclides
18. Oxidizable material

Studied silicon and nitrate in fresh water [7]. Ray and David studied Effect of sewage on the quality of River Ganga in Kanpur. Singh and Bhowmik studied Effect of sewage on the quality of River Ganga in Patna. Oake found heavy metal in sewage sludge. Oake found heavy metals in sewage sludge. chemistry of urban runoff water [8]. Kothandaraman studied sewage of Ahemdabad. Effect of sewage disposal in water bodies had been studied by Cooke Biology of Sewage was studied by Sutton and Ornes Balmforth Studied pollution aspect of sewage overflow. Agarwal studied chemistry of runoff water containing bird and animal Waste. Crude agriculture practice is imp source of water pollution. Detected pesticide in river water [9]. Detected agriculture pesticide in river water [10]. Large number of toxic and hazardous waste are present in industrial effluents.

Table1: Toxic chemical production in India

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Amount Released (thousand tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticide</td>
<td>39.6</td>
</tr>
<tr>
<td>Dyes and pigments</td>
<td>29.8</td>
</tr>
<tr>
<td>Organic chemicals Petrochemicals</td>
<td>42600</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>8500</td>
</tr>
<tr>
<td>Steel</td>
<td>9500</td>
</tr>
<tr>
<td>Caustic Soda</td>
<td>558</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>5.08</td>
</tr>
</tbody>
</table>

Standard of water have been prescribed by different health agencies. US Public health drinking water standards (USPHS) [13]. Indian council of Medical Research (ICMR) .Quality of water effects human health.

Components of Polluted Water
Nutrient Content Nitrate and phosphate which is most often present in the runoff water of rural as well as urban area act as nutrient in the waterbodies. Concentration of the same in water, sediment and macrophytes was conducted by [6].

Table 2: Water quality standards

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BIS/WHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>40</td>
</tr>
<tr>
<td>EC</td>
<td>.07</td>
</tr>
<tr>
<td>pH</td>
<td>6-8.5/7-8.5</td>
</tr>
<tr>
<td>DO</td>
<td>5 or more</td>
</tr>
<tr>
<td>BOD</td>
<td>3 or less</td>
</tr>
<tr>
<td>COD</td>
<td>20 or less</td>
</tr>
<tr>
<td>Chloride</td>
<td>250</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>80-120</td>
</tr>
<tr>
<td>Nitrate</td>
<td>45</td>
</tr>
<tr>
<td>Phosphate</td>
<td>0.1</td>
</tr>
<tr>
<td>Sulphate mg/l</td>
<td>200</td>
</tr>
<tr>
<td>Total hardness</td>
<td>300</td>
</tr>
<tr>
<td>Total solid</td>
<td>500</td>
</tr>
<tr>
<td>Calcium</td>
<td>75</td>
</tr>
<tr>
<td>Magnesium</td>
<td>30</td>
</tr>
<tr>
<td>Potassium</td>
<td>20</td>
</tr>
<tr>
<td>Sodium</td>
<td>20</td>
</tr>
</tbody>
</table>

Temperature
Temperature plays an important role in aquatic ecosystem. Some industries discharge hot water in aquatic ecosystem because of thermal pollution and disturb it. The industries which cause thermal pollution are nuclear powers, power generators. In these industries water is used as coolant. All industries cause thermal pollution. Thermal pollution reduces bacterial population of surrounding aquatic Ecosystem [14].Temperature effects Electrical conductance of water this is responsible for biodiversity modification. Increase in temperature reduces oxygen content of water Rate of biodegradation of organic matter is directly proportional to temperature; this again reduces DO and nutrient accumulation. Studied distribution pattern of plant with respect to light and temperature. Studied nitrogen and phosphorus accumulation in hyacinths [15]. Blue baby is symptom of nitrate pollution in ground water.Thermal pollution disturbs foodchain and foodweb resulting in abnormalities. Nitrogen level in lotic ecosystem was studied by [16]. According to phosphorus in aquatic ecosystem is recycled by plant absorption [17].

Do (Dissolved Oxygen)
The total oxygen content in dissolved water (1 liter) is called dissolved oxygen.
BOD of a water sample is amount of oxygen spent for biochemical processes during 5 days at 200 C.

COD
COD is quantity of oxygen required for complete oxidation of all reducing substances of organic as well as inorganic origin present in water. Studied relationship between BOD COD in river Ganga. Mittak and Ratra BOD are affected by presence of toxic metals. DO affect sewage treatment DO affected by turbidity which restricts solar radiation. Roots of aquatic plants increase DO by photosynthesis maximum are green and contain chloroplast.

Turbidity
SPM (suspended particulate matter) affects turbidity of water. Michell and Furnas (2001) Logger an instrument to monitor aquatic SPM.

Ph
PH is negative log of H+ ion concentration. PH is essential for survival of organisms. PH affects enzyme activity and mobilization. PH also affects distribution of plants. studied changing phytolanktonic composition with lowering pH in Canada.

Organic Matter
Organic matter and inorganic carbon affects aquatic ecosystem. Organic matter and inorganic carbon affects eutrophication Organic matter and inorganic carbon affects chemistry of water Sharma studied pollution caused by spillage. Studied org pesticides in river of Buenos Aires and Argentina [19]. Toxic organic contaminants of agriculture waste in water bodies were studied by Thana Pocklington and Tan 1987, seasonal variation in organic content of waterbodies. Specific odour is due to presence of particular org comp. Hydrophytes growing in c rich medium having capacity to absorb inorganic carbon for photosynthesis Selected microorganisms absorb organic phosphates. Dead plants fall in water increase org content [20].

Heavy Metals
Heavy metals present in industrial effluents are absorbed by hydrophytes According to these metals precipitate in sediments [21]. Staves and Kanaus studied Chromium absorption by duckweed. Sinha studied Cr and Mn uptake by Hydrilla. Risgard and Hansen Reported Hg in hydrophytes and herbivorous fishes. Pacakova Studied metal content of of various strata of river. Some plants are also known as biological filters due to their nutrient absorption property Rai and Chandra reported accumulation of Cd, Hg, Pb, and Ti by Hydrodictyon algae. Cd and Pb accumulation by rooted aq plts shown by Mayes. Cd, Hg, Pb, Ti are present in nutrient rich lakes. (Mathis and Kavern 1975) Azolla and Lemna bioaccumulate Pb and Zn Bioaccumulation of Hg and Cr has been studied by Jana Water Hyacinth accumulated Zn [22]. Guzzilizoni reported uptake of Zn, Cd, and Pb by Lemna. Ciba Metals in Composted Municipal waste. Ceratophyllum accumulate Cr Lichen Peltigera absorb Cd Eichhornia absorb Cd [23]. Gobeil reported Ag in sediments of rivers and estuaries. Singh studied Chemical composition of waste water in Amritsar. Srivastava studied behr of Lanthanide -920-dye complex in water. Tiwari studied metal dye complex in waste water. Heavy metal (Cd, Cu, and Ni.) accumulation in animals causes gall bladder cancer. They reach gall blader through food chain.

Microbial Pollution
Microorganisms are present in sediments of ocean [24]. Microorganisms remove nutrients from water. Underground water also contains bacteria [25]. Hiraishi relation between coliform bacteria and organic pollution. Studied coliform number in water body. The microbes have reached underground water also. Ground water should be protected [26].

Water Pollution and Its Effects
Water biochemistry controls distribution of fauna and flora Stevenson syudied effect of bathing water on water quality. Manawar studied effect of pollution on Euglina. Guizlizzoni studied effect of heavy metals on Macrophytes. Effect of acidification on aquatic fauna studied by Pamela and Stokes, Smith pollutants concentrating in sediments. Heavy metals are present in grains, vegetables, fruits, milk. Heavy metals cause large number of diseases. More than 85 % mortality is due to water pollution.

Conclusion
Level of water pollution has increased very much. Water is polluted in most parts of world. Our body contains more than 1000 hormones and enzymes which are specific in working and heavy metals and polluted water can change their working. We also consume DDT, BHC, Aldrin and many other pesticides. We also consume heavy metals. Entry of heavy metals and xenobiotics should be avoided. Pre seasonal fruits and vegetables require chemical fertilizers and pesticides to develop adverse effects. Accumulations of xenobiotics in our body in specific organs cause death. We should move towards sustainable development. Stop water pollution and we should think for future generations. We should check accumulation and biomagnifications of heavy metals and xenobiotics [27-43].

Acknowledgement
I am thankful to Principal SPCGCA, my team of workers Garima , Garima kumari, Grace, Vandana. I am also thankful to my collegues department of Zoology SPCGCA.

References

Copyright: ©2019 Rashmi Sharma. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.